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Master Equations for Subordinated Processes

F. Monti'?> and H. R. Jauslin’’
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We study Markov jump processes constructed by subordination of diffusion
processes. The procedure can be viewed as a randomization or a coarse graining
of time. We construct the master equation for the cases of finite and infinite
total jump rates, and give a collection of explicitly solvable examples.
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1. INTRODUCTION

Markovian stochastic processes are used to model a wide range of physical,
biological, and engineering phenomena." Diffusion processes governed
by Fokker-Planck equations are quite well understood, and there are
many explicitly solved examples.!” Much less is known for processes with
jumps, in particular when there is an infinite number of jumps in a finite
time interval. In the present work we discuss a method that allows us to
construct Markovian processes with jumps, for which one can determine
explicitly the transition probability and many other properties. The
processes are constructed by subordination of diffusion processes. This
procedure, introduced originally by Bochner,>” can be interpreted as a
randomization or a coarse graining of time. We will characterize the con-
structed processes by master equations. For each known diffusion process
we can construct families of jump processes with known properties. In
particular, models subordinated to the Wiener and the repulsive Wong
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414 Monti and Jauslin

processes can be characterized in great detail. The construction also
provides models with combined diffusion and jumps. This method was used
by Hongler®® to construct exactly solvable jump processes.

Assuming some regularity conditions, the transition probability den-
sity p(x, t]x,) of a homogeneous Markov process (with values in the reals)
satisfies the following integrodifferential equation (Kolmogorov—Feller
equation):

2

) J i
2 p(x, t]xo) = e [D(x) p(x, t]x0)] +3_x§ [Dx(x) p(x, t|x,)]

+J[dy[W(x|y)p(y,tlxo)—W(y!X)p(x,tlxo)] (L.1)

where D, (x) is the drift, D,(x) is the diffusion coefficient, W(x|y) is the
jump rate density, and { denotes the Cauchy principal part of the integral.
Through subordination we will obtain either processes containing the three
components—drift, diffusion, and jumps—or pure jump processes, with
finite or infinite total rate. The construction also provides a simple way to
express the master equation in the form of a Kramers—Moyal expansion.

The paper is structured as follows. In Section 2 we describe the proce-
dure of subordination and give some exaples of subordinators. In Section 3
we discuss general properties of processes subordinated to diffusion
processes, referring in particular to their master equations. In Sections 4
and 5 we treat the particular cases of subordinating the Wiener and the
repulsive Wong processes. In the Appendices we give the proofs and discuss
some more technical aspects.

2. SUBORDINATED PROCESSES

We will summarize the method of subordination of Markov processes,
which was developed by S. Bochner. A complete discussion can be found
in refs. 7 and 10. The main idea is the following. We start with a time-
homogeneous Markov process with transition probability density (t.p.d.)
Dp(x, t]x,), and define a new function g(x, t{x,) by

. 11%0) = [ di(s) pl. | x0) 1)

where dy,(s) is a measure that depends parametrically on ¢ and is called the
subordinator measure. If dy,(s) satisfies certain conditions, g(x, t|x,) will
be the t.p.d. of a new Markov process. The required conditions can be
stated in the following three equivalent forms:
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A. 7,(s) is the transition probability distribution of a process with
positive independent increments (ie., a positive, infinitely divisible
process)*): for all ¢, 7,(s) is a nondecreasing function of s such that (i)

jwdy,(s)=1 forall >0 (2.2)
0

y,(0)y=0 forall ¢=0 (2.3)
Picol0F)=7,20(0)=1 e, dy,_o(s)=0,(s)ds (2.4)

where § , (s) denotes a Dirac delta function defined on the positive reals:

0 s=0

2.5
1 5>0 (25)

5.(s)ds=do (s), 0.(s)= {

and (ii) it satisfies the Chapman-Kolmogorov equation on the positive
reals:
Pe9) =] (= v)dy (o) (26)

v=

We use the notation f(0*) = lim,_ 4+ f(s), where the limit is taken
through positive values of s.

Property (i) allows one to interpret the subordination as a randomiza-
tion of time: One looks at the process at random times s with a probability
distribution given by y,(s). When we discuss the relation with a master
equation we will see that it can also be viewed as a coarse graining of time.

Property (ii) states the Markovicity of the subordinator and guaran-
tees that the new process is also Markovian.

B. The distribution 7y,(s) can be characterized by its Laplace trans-
form, which, since dy,(s) is positive, is a completely monotone function for
all z. The conditions (i) and (ii) are expressed by requiring that it can be
represented as

j dy,(s)e F=e ™) for z20, =0 (2.7)

0
where v(z) is a continuous function satisfying

forz=0: v(0)=0 (2.8)
forz>0: v(z) >0 and is smooth (¥*) (2.9)

and its derivative is a completely monotone function:
n

d
()" —ov(2) =0, n=1,2.. (2.10)

R27/60/2-4.0



416 Monti and Jauslin

We will refer as subordinator interchangeably to the process, the measure
dy,(s), and the function v(z).

C. It can be shown'”’ that the most general subordinator v(z) can be
represented as

y(z)=cz + lim jw do(s)(1—e=) 2.11)
§—-0t dg

where ¢ 20 is a constant. The condition (2.10) is equivalent to requiring
that dp(s) is positive on (0, co). Furthermore, dp(s) must satisfy the
foliowing integrability condition at 0 and at oo:

f; do(s) s+ Lw do(s) < o0 (2.12)

As shown in Appendix B, do(s) is the jump rate of the subordinator, since
it is related to dy,(s) by the following weak limit:

1
do(sy= lim ;dy,(s) in (0%, ) (2.13)
t— 0+

Further, the constant c is its drift, and it does not have a diffusion part. We
distinguish two types of jump processes: those with a finite and those with
an infinite total jump rate, which, according to (2.7) and (2.11) (for ¢=0),
can be expressed as

[ de(s)=v(w) and e ™==y(07)=y,0)  (214)

o+

The subordinator is called proper if the g(x, ¢|x,) obtained by subordina-
tion to a process with a density p(x, ¢]|x,) is also a density. This is the case
when ¢(x, ¢} x,) is measurable and the following equivalent conditions are
satisfied:

(a) lim v(z)= o0 (2.15)

(b) 7.(0)=y,(0") (2.16)

() jl do(s)= 0,  or ¢#£0 (2.17)
0+

A nonproper subordinator thus has a finite total rate and therefore its
distribution can be written as®®

F(s)=e "5 (s)ds+ [1—e "] @y +)(s) (2.18)



Master Equations for Subordinated Processes 417

In this case, the subordinated ¢(x, {|x,) consists of a density plus a term
with a delta function (see Section 3).

A proper subordinator with ¢=0 has infinite total rate. If ¢ #0, the
subordinator is proper, independent of the type of jump. As we will see, the
type of jump is transmitted to the subordinated process.

A useful property is that if v,(z) and v,(z) are both subordinators,
then

vy(vi(2)) [and, as a consequence, v,(fz), for f>0] (2.19)
and

o vi(z)+ o, v,y(2) for ay,a,>0 (2.20)

are also subordinators.”” Furthermore, we will see that the existence
of moments of the new process depends on the differentiability properties
of v(z) at z=0. It is useful to introduce the concept of regularized
subordinator: To any subordinator v(z) we can associate a family of
subordinators v4(z) depending on a parameter >0 defined by

vp(z) = v(z+ B)—v(p) (2.21)

vp(z) is again a subordinator, since it satisfies the conditions (2.8)-(2.10).
For >0 it is smooth (¥) at z=0. It is easy to verify using (2.7) that the
subordinator measure associated to the regularized v,(z) is given by

dy; . (s)=dy,(s) eV Plg sk (2.22)

Examples

We will discuss a family of subordinators that can be represented in
the general form

Wz) == LB+ 92)"— 7] (223)

where «, f, >0 and x >0 are constants with ranges

(D) p=0, O<a<1

(2.24)
(I1) B >0, —wo<agl]

k and 3 are time scale normalizations that we will use only to get simpler
expressions in the examples by choosing them appropriately.

822/60/3-4-9*
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Case 1 consists of all stable processes with positive increments. The
case a =90, f>0 is to be interpreted as the limit o — 0 of (2.23), giving

v(z)=K1n<1+%> (2.25)

Case I for >0 is a regularization of I. Negative values of « lead to
nonproper subordinators.
The corresponding representation (2.11) is: (1} f «=1and =0

2)fO0<a<tand 20, or —0o<a<1and >0,

o

3
c=0,  dols)=—

= melg=shd g 27
F(I—oc)s e s (2.27)

where I'(x) is the gamma function.
The subordinator measure dy,(s) is known only for some special
values of a:

(i) B=0:
a=1: dy,(s)=6,(s—k3t)ds (2.28)
(i) p=0:
L 9\ —1280ys
oc—z. dy,(s)—xt(ﬁ> e ds (2.29)
1 1/2 3 3/2 3Q43N 172
a==: dy,(s)zg—<—'€£> Kys (2(" o >a’s (2.30)
3 3\ s s

where K (r) is a modified Bessel function.?

(iii) B> 0: The measures for a=1/2 and «=1/3 can be constructed
immediately from (2.29), (2.30), and (2.22). Furthermore,

_o. d B ﬁ kt Sktfl —Bs/8
oa=0: y(s)= 3 F(Kl)e ds (2.31)

PN 15\ 12
a=—1: dy,(s)=e“”‘/ﬂ5+(s)ds+<£> e MBS <2<—§> >ds

(2.32)

where 7,(r) is a hyperbolic Bessel function.!!?’ This last example is a non-
proper subordinator.
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3. SUBORDINATION OF DIFFUSION PROCESSES

Since the subordinated process is Markovian, its t.p.d. g(x, ¢|x,) must
satisfy an integrodifferential equation of the type (1.1).®) In Appendix A we
prove the following result: If the t.p.d. p(x, t{x,) of the original diffusion
process satisfies the Fokker—Planck equation

0 0
= 5; PO% t1x0) === [D(x) p(x 1] x0)]

__;_;_2 [D,(x) p(x, t[x)] = Lpp (3.1)
X

then the t.p.d. of the process subordinated with a proper subordinator
satisfies

0 0 1 o?
- 2 at th) = { £ [D403) a6t )]~ 52 1000 o 3001

T W) 405 tx) = Wl p) alr, 1lx0)] (32)

The symbol fdenotes the principal part of the integral. The jump rate
W(x|x,) is given by

W(x!x0)=f°°dg(s)p(x,s|xo) (for |x—x,|>e>0) (3.3)

Oy

and the constant ¢ and the measure do(s) are those defined in the represen-
tation (2.11) of v(z).

Remarks. 1. Equation (3.2) implies that the nature of the trajec-
tories of the subordinated process is determined exclusively by the sub-
ordinator (ie., it is independent of the initial diffusion process): If one
chooses ¢=0in (2.11), one gets a pure jump process. If ¢ #0, do(s) #0, the
subordinated process has jumps and diffusion. If ¢#0, do(s)=0, one
recovers the original diffusion with a rescaled time.

2. The expression (3.3) for the jump rate allows us to give an
intuitive interpretation to subordination (for ¢=0): In a time unit, the
transitions through jumps correspond to a weighted average of the under-
lying diffusion. Thus, by looking only at a coarse-grained time, the
accumulated diffusion appears as jumps.

3. By subordination we can construcf processes that involve both
jumps and diffusion. The tp.d. ¢'“)(x, | x,), solution of (3.2) for ¢+#0,
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can be obtained from the t.p.d. ¢(x, t]x,) of the pure jump process [ie.,
setting ¢ =0 in (3.2)] and the one of the original diffusion process as

o)

q“(x, 1] xo) =f dy p(x, ct]y) 'y, t}x0)

=Jw dy ¢(x, t]y) p(y, ct| x,) (3.4)

—

This result is deduced in Appendix B.
4. Equations (3.1) and (3.2) can be written formally as

g p(x, tlxo)]
— = plx, t|xg)=@o(x) H| ———— 3.1a
3 p(x, 11x0) = @o(x) [ 0o(x) ( )
and
6 q(X, tixo):|
— —q(x, t|xg) = x)v(H)| ————— 32a
5tq( | x0) = @o(x) v( )|: ?o(x) ( )
where H is the self-adjoint (Schrodinger) operator defined by
1 10 0
=— =——— — 35
He S Lrolx) = =5 2 Do) 7ot V) (35)

and @l(x) = pg(x) is a stationary solution of (3.1). This representation is
casily obtained using formal eigenfunction expansions of H. We discuss two
examples in Section 4.

3.1. Nonproper Subordinators

The total jump rate of the process constructed with a nonproper sub-
ordinator can be expressed using (3.3) and (2.11) as

lim dx W(x|xg) =£o dx f: do(s) p(x, s|xq)

£—0Y|x - xo|>e
=" da(s)=v(c0) (3.6)

i.e., if the subordinator has a finite total rate v(co), it will also be the case
for the subordinated process, independent of the original diffusion.

A proper subordinator will lead to a process with jumps of the same
type as its own.
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It is well known'? that if the total rate is finite, the process typically
stays at a fixed position between jumps during a finite time interval. In our
case, the t.p.d. constructed with a nonproper subordinator v(z) can be
written in the form

gl t1x0) = [ o) ple. 51 %0

= [,07) =7, (0)] (. 01 o)+ | i (s) plx: 5]%0)
=e M®)5(x ~xo) + [1~— e~ ") g (4, x, x) (3.7)

ie, g(x,t|x,) consists of a density ¢'*)(t, x, xo) plus a delta function.
Before each jump the system stays at a fixed position x, for a time interval
governed by an exponential distribution with mean decay time 1/v(0).

The fact that if ¢#0 the subordinator is always proper has the
intuitive interpretation that, if the process has a diffusion or a drift part, it
cannot stay at a fixed position for a finite time interval.

Since g(x, t|x,) is not a density, the conditions we require for the con-
struction of (3.2) (see Appendix A) are not satisfied. One can, however,
easily construct the master equation for the probability distribution
Q(4, t|x,) for transitions from a point x, into a set 4: Equation (3.7)
becomes

04, tlx) =™ (xo) + | dn(6) [ dvplxisixg)  (38)

where y(x,) is the indicator function of the set A. For a small time At we
can write

O(A, At)x0)= e~y (xo) + 4t | da(s)
0+
x | dx plx, s|x0) + (4, 41, xo) (39)
A
with a remainder of o(4¢):
F(A, A1, x )~Azj°°[d (5) - — d(s)
s s Vo) o+ VA[ At Q

xf dx p(x, 5| xo) = o(4t) (3.10)
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due to (2.13). This is the condition required to apply Feller’s result"® to
obtain

o itz =" [ ] aewixiy) |0 rix)

—v(oo)j 0(dx, 7] xo) (3.11)
with
Wil xo)= | do(s) pl. 51 %) (3.12)

3.2. Stationary States

Assuming that the diffusion process (3.1) has a stationary state p(x)
that satisfies detailed balance, we can show that the subordinated process
has the same function p,(x) as stationary state [ie., ¢,(x)= p.(x)] and
it also satisfies detailed balance. The condition of detailed balance can be
expressed as

p(x, 1Y) pa(y)=p(p, 11x) pu(x) (3.13)
The definition (2.1) implies that

q(x, t]y) Pl ¥) = a(y, t|X) pulx) (3.14)

so we have to verify, using this relation, that p,(x) is a time-independent
solution of (3.2), ie.,

| ayIW(y1%) pul) = WAx1 ) pu(7)1=0
which follows immediately from (3.14) and W(xjy)=lim,_,-{1/7)
q(x, 1]y).

4. SUBORDINATION OF WIENER PROCESSES

One can characterize quite generally the processes subordinated to the
Wiener process by an arbitrary subordinator v(z). It follows from the
definition (2.1) that since the Wiener process is homogeneous in space [i.e.,
D(x, t]xg) = p(x — xq, £|0)], the subordinated process will also be so. We
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recall that the t.p.d. p(x, 7|x,) and the characteristic function @ of the
Wiener process are given, respectively, by

—(x— x0)2

p(x, t]xo) = (2nt) "' exp 2

(4.1)

and

D(u, 1) = Jjo dx[exp(—iux)] p(x, t]xq) = exp <§ uz—ix0u> (4.2)

The characteristic function of the subordinated process @, is obtained
immediately from Egs. (2.1), (2.7), and (4.2) as

®,(u, 1) = exp[ — tv(u?/2) — ixqu] (4.3)

which leads to
1 e — w(u¥2)
g(x, I;XO):EL ducosf(x—xy)u]e (4.4)

The equation for the time evolution can thus be formally written as

2

0 10
~ Sl txa) = (= 325 ) a0 )

which is a special case of (3.2a). We remark that the subordinated process
can be decomposed into a sum of two independent processes, one a Wiener
process and the other a pure jump process. This is casily seen by looking
at the characteristic function (4.3), which can be factorized using (2.11) as

@ (u, t)=exp(— tcu?/2 — ixqu) eXp {——joj o(dr)[1— exp(-ruz/Z)]} (4.6)

The representation (3.2)-(3.3) gives us the interpretation of the second
factor as the characteristic function of a pure jump process.

4.1. Moments

If the characteristic function is #+ 1 times continuously differentiable
in a neighborhood of zero, then the first » moments exist."*) Thus, for
processes subordinated to a Wiener process the existence of the moments
depends on the differentiability of the function v(z) in the neighborhood of
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zero. If v(z) is analytic, all the moments exist. If we apply this criterion to
the family of subordinators (2.23), we obtain the following results:

1. For >0 all the moments exist.

2. For p=0: If 1/2<a<1, the first moment is zero and all other
moments do not exist; if @ < 1/2, no moments exist.

In the case where v(z) is analytic, we immediately obtain a develop-
ment of the form

d 3 0 (_l)k a2k 47
—EQ(X,llxo)—k; X M 5 3% 405 11 %) (4.7)
with
. c—I—jOO o(dr)r for k=1
ot

- ) (48)
z=0 (—1)’“1[ oldr)r*  for k=2
0+

o= 5 (2)

which is indeed the Kramers-Moyal expansion of the subordinated process
(see Appendix C).

4.2. Examples

We will denote the subordinated process by {{(7)},>, and the condi-
tional moments by

|7 dxla—xo) gl 1x0) = <L)~ 201",

—

I. As a first example, we consider the Wiener process subordinated
with v(z) = k3*z%/o with 3=2 and Kk =a.

It is well known” that this choice of v(z) leads to the symmetric stable
Lévy processes of index 20" The t.p.d. is given by

1 peo .
q(x, l|xo)=—f du e ™" cos(u|x — x,|) (4.9)
Yo

These processes have applications in the study of the renormalization
group,'® relaxation in polymers,*”'®) and anomalous diffusion.""® For
some special choices of « the integral (4.9) can be expressed in terms of
special functions:
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(i) a=1/2 leads to the Cauchy process:

4
a2+ (x —x0)*]

q(x7 [|X0) =

(ii) a=1/3 gives

_exp[ —207/27(x — x0)*] W _ 4
q(x, t]|xy) = 2[27n(x — %) 1" —1208\ 37 T y?

21343 G 74 4P )
T (B3n) 2 | x— x| T \67 37 27(x — x,)?

where W, (z) is a Whittaker function and G(a; b; z) is a confluent hyper-
geometric function, both functions being bounded when z tends to infinity.

(it1) «=1/4 leads to

t2 1/2 Z2 l C t2 :'
9l 1] x0) = <2n |x—x013> {C"S (4 lx—xo!>[2_ <4{x—xoi>
) t? 1 2
e (4 |x~xol>[5_s(4 |X—x0'>:|}

where S(z) and C(z) are the sine and cosine Fresnel integrals.
We can easily compute the jump rate for all «e(0;1) using the
formula (3.3):

Wix|xg) = I'(200+ 1) sin(ra)

T Ix__xof2a+l

As we have seen from (3.2) and ¢ =0, these processes consist exclusively of
jumps for all o. It is interesting to contrast this fact with the dependence on
a of the fractal Hausdorff-Besicovitch dimension H of the trajectories in the

(1, {(1)) plane®®;

1
1 if O<cx<§
—-2‘; if —<O(<1

with probability one. We finally remark that since the Lévy processes do
not have moments,* they do not admit a Kramers—Moyal expansion. This
follows from the fact that v(z)=z" is not analytic at zero.

* Except the first moment, if 1/2 <a < 1.
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II. Next we give an example of a process with combined jumps and
diffusion, by taking v(z) = cz + z!/%. This leads to a characteristic function

@, (u, 1) = exp(—t(u/2) — t|u| ~ iux,)
and a t.p.d.

1 (t—i]x—xy? t—i|x— xol
q(x, t|x0)=W[exp [T erfc ——(WZ_-—

+exp I:— (141 b;t— xo”j erfc <t+(l'2|tx)l—/2x0|>}

where erfc(z) =1 —erf(z), and erf(z) is the normalized error function.®!
This process is the independent sum of a Wiener and a Cauchy process. Its
jump rate is that of the Cauchy process:

1

W(xlxo)=m

This process has no moments and hence no Kramers—Moyal expansion.

III. As a third example, we take the subordinator v(z)=
k/al (B + 32)*— p*], choosing the constants >0, 3=2/f, and k= |u| f*
for «#0, and k=1 for o =0. The t.p.d. is then given for a e [0; 1) by the
integral
exp(tf**) j“’

T

g(x, t|xo) = duexp[ —t(B% +u*)* ] cos(u |x —xo|)  (4.10)
0

and the jump rate is

_ o 2ﬁ >zx+l/2 B
Wil = = A () Kavsat b

Since v(z) is an analytic function in the neighborhood of z =0, we can write
a Kramers—Moyal development. Using the result of Appendix C, we obtain

0 for n odd

= ol (1)2 — &) !

F(i’l/2+1)[’(1_a)ﬁnfza for neven

(1) For the value a=1/2 the integral (4.10) can be evaluated
explicitly:
e pi
n[t? 4+ (x — xq)

q(x,t\x0)= 2]1/2 Kl(ﬁ(t2+(x_x0)2)1/2)
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The conditional moments can also be computed for o =1/2:

0 for n odd
CLE) —x01" > =

= (%)Mk " I((n+1)/2) K- )2(Bt)  fornmeven

(i1} For =0, the expressions become simpler: the integral (4.10)
gives

14

2t o
g, 11300 =2 [ (4 02) 7 costu 1~ xal)
T Yo
B <ﬂ >t~1/2
= Pix— K —
= I(0) 2{)‘ Xol z~1/2(ﬁ|x Xo)
The jump rate becomes
- e —Blx—xol
Wix|xg)=————
o |x — X

The conditional moments and the Kramers—Moyal coefficients 7, are

0 for n odd

NEOREN DN P

prr(t) I'(n/2+1)

for neven

0 for n odd

=3 2 —1)!
B’l

for n even

5. SUBORDINATION OF REPULSIVE WONG PROCESSES

The repulsive Wong process is a diffusion process with drift D,(x)=pu
th(a; ux) and diffusion coefficient D, = 1. Its t.p.d. is given by

2
chia; ux)  on e~ ¥ X0y

ch(a; pxo) (2r0)'?

plx, t]x0) =

1Its Fokker—Planck equation is
2

i i 10
- ap(x, t]xq) = [u th(a; ux) p(x, 1] x,)] —Ea—xzp(x, t]xo)
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where we have introduced, for a >0, the notations ch(a; z) = (e* + ae ~7)/2
and th(a; z) = ch(—a; z)/ch(a; ).

This process belongs to a class of exactly solvable models that can be
constructed by modifying the spectrum of the Wiener process.*>** The
Wong process has the following (conditional) characteristic function:

chla; u(xo—iut)]
ch(a; ux,)

@(u, l) - eftuz/ZAiuxo

If the subordinator is analytic in a neighborhood of zero, we obtain the
following (conditional) characteristic function:

— mxp

@ (u, z)=————-2 ha ) (0= U2+ 1) 4 o= xo— 2 = i)
ch(a; px,

and hence all the moments exist. The t.p.d. of the subordinated process is
given by the integral
ch{a; ux) 1

—j due I cos(y [ x —xo|)  (5.1)
4]

1] X0) =
q(x, 11x0) ch(a: jxg) @

which can be formally seen as the solution of the time-evolution equation

1__(_3_1 ,u_2>q(x,t|x0)

b
. t — h . —
4l £]x0) C(a,uX)V< sty ) Gy

ot

The jump rate is given by

W(x|x) = do(s) e 1R~ ors

chia; ux) 1 joo
ch(a; px,) (2m)'?

o+

The Kramers-Moyal coefficients can be expressed as an integral [at least
when ¢ de(s) s> < c0]: For n odd

!'th s *® n/2  —uls,
x0) ="t [ o) e AL~ )

~ D (1 /)1 + cp th(a; pxo) 3.,
and for n even

! £ )
100) = G |, 4e5) 57 LD (= /5)

+ D (/)] + oy,

where 9,(z) is a parabolic-cylinder function, and §,, is the usual Kronecker
symbol.
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Examples

We take again the subordinator v(z)=x/a[(f+ 8z)*—p*] with
f>0, 3=2/f, and k= |a| B* for « #0 and k=1 for « =0. The case where
B =0 is recovered as a trivial limit, so we shall make only some remarks
concerning its particularities when necessary. The t.p.d. is given for
ae [0; 1) by the integral

ch(a; ux) e

q(xa ZJxO) = ch(a; ,U,XO) -

j du e~ PR cos(y1x — x0) (5.2)
0

and the jump rate by

a+1/2 . 2 2\1/2\ a+ 172
Wix) xg) = 02** 2 ch(a; px) ((ﬁ +u )/>

7 F(1—a) ch(a; pxo) \ x =X
x K, 1/2((ﬁ2 + 1) [x —Xo|)

The conditional moments and the Kramers-Moyal expansion exist if
5>0, due to the analyticity of v(z) at zero, but not for f=0. The
Kramers—Moyal coefficients for >0 also have a general expression in
terms of special functions:

{ 2n+1 1
———a————iF<E+ 1> F(n—t~a> uthia; uxey)

Jar(1—a) \2 2
a1V n n+l 3
X(ﬁ2+u2) (n+1)/2 2}71 (E-l—l,T—fx,-z—,m) for n odd
nn(x()): on +1

()6

Jrr(l—a) \ 2 2
+1n [T

2 2Na-n2 g n n L

x(B* 4 u?) 2 1( 55 06,2,———-ﬁ2+#2> for n even

where , F,(a, b; ¢; z) is the Gauss-hypergeometric function
(i) For a=1/2 the t.p.d. can be calculated:

cha; px) e (B> + )"

ch(a; pxy) m [1%+ (x—x0)*]"?

x Ky (B +u?)"2 [+ (x — x0)°1"?)

q(x, llxo) =

We remark that for 8 =0, we recover the Hongler process.®®
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(ii)) For o =0 the expressions are much simpler. The t.p.d. is given by
)= B chia; ux) ( B? |x — x| )"”2

7 [(1) ch(@; pxo) \2(B% + )"

XK, _ 1/2((ﬁ2 + 1) x = xo|)

q(x, t | Xo

the jump rate is

 chla ) expl— (B4 1) [x— xol]
WA X0) = (@ oco) o

and the conditional moments are, for » odd,

28! I((n+1)2+1)
(n+1)/2) (1)
x pth(a; pxo)(f2+p2) =1 r 2

n+l n 3000
O (LI O P .
XZ l( 2 +52+ :2sﬂ2+'u2>

L) =% ] 0=F

and for n even,
2% (n— 1) [(n/2 + 1)
I'(n/2) (1)

n n+l 1 42
P+ R
X2 1<2+’ 2 2 ﬂ2+u2>

<[C(t)—x0]">XO= (ﬁ2+ﬂ2)_t_n/2

The coefficients of the Kramers—Moyal development simplify to

(n—1)! th(a; ux,)
ﬁ2n
1a(x0) =€ X {L(B*+uP) "+ ul"— (B + ) —u]"} for n odd
(n—1)!
ﬂ2n

It is interesting to compare this process, which is Markovian, with the non-
Markovian process appearing in ref. 9.

(LB + )+ p]"+ (B2 +pA)* —u]"} formeven

APPENDIX A

In this Appendix we deduce, under some regularity conditions, the
Kolmogorov—Feller equation (3.2) for a process subordinated to a time-
homogeneous diffusion process by an arbitrary proper subordinator.
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Theorem 1. Let p(x,1]|x,) be the tpd. of a Markov process
satisfying the following conditions.

(i) For x,in a compact set Kc R and ¢>0

1
?j dx (x—x0)" p(x, t]x0) =D, (x0) + R,,.(1, & Xq)s m=1,2
lx—xgl <
(A.1)
and
lim R, (¢, & x4)=0+0,(1) uniformly in x,e K (A.2)
t—0

(i) For |x —x¢} >¢&>0, with fixed ¢,

1
;p(x, t|xg) = W(x|xo) + Rudt, &, x, x;) (A.3)
and
lim R,(t, & x, x4)=0 uniformly in x, x, (A.4)
t—0

(iii) For >0, p(x, t|x,) is continuously differentiable in 7 and, if
D (x), D,(x)#0 twice differentiable in x. The D,(x) and D,(x) are once,
respectively twice, differentiable.

Then p(x, t| x,) satisfies the equation

2

a 0 ¢
3; P16 t1X0) = =22 [D1(x) p(x, 1] %0} ] + 75 [Da(x) p(x, 1]%0)]

+fdy [Wx19) plo 1130) = WUs %) plx, t1x0)] (AS)

Remarks. The uniformity conditions (A.2) and (A.4) can be stated
more explicitly as follows. For x, in a compact set K< R, there exist
functions R,,(t, ¢) and R, (e) such that

|Rm(t’ &, XO)I < ﬁm(ts 8) ]’ém(g) 0 (A6)

t—0

There is a function R, (1, &) such that

|RW(t: &, X, x())' < ﬁW(ta 8) w 0 (A7)

The proof follows essentially ref. 3, but with weaker hypotheses needed in
the present context.
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Proof. We consider test functions f(x) € €7, with compact support in
K, which can be developed in the form

d 1 d?
0=+ -0 L 2 T (R a8)
where the remainder is equal to
L d&f(§)

Ry, x)=(y=x)3 =5 with ¢elyx]

We consider

0
[ dy 7 5 ply. t1x0)

0
- 5def(y)p(y, ] xo)

= lim A—def PP, t+ A1l x) = p(p, t]x)]  (A9)

At

Using the Chapman-Kolmogorov equation, separating the range of
integration into two parts, and inserting the representation (A.8) in one of
them, we can write the first term as

[y 73 p(y. 1+ 411x,)

= dy dx f() p(y, 411 %) p(x, 1] x,)

Ix—yl>e

+f[ o ayax f5) p(y, 4t1%) p(x, 11x0)

Ix—yl<e

={[ dyax sy p(y. t1x) plx, t]xo)

|x—yi=e
+[[ 0 dpax 00 p(y, A1) plx, 11x0)

lx—yl<e
d
+‘”‘{x—y|<5dy dx [(y"‘X) j;(;c) p(y’A”x)

(y—x)? fu)

1
+5 0 ﬂ%dﬂﬂ]ﬂxﬂxd

+{[ ayax (=22 Ry, %) p(y, 411%) plx, t1x0)

jx—yl<e
yekK
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If we multiply the second term of (A.9) by the trivial factor
1={dx p(x, 4t] y) and exchange the dummy arguments x and y, it
becomes

[y £ (3, t1x0) = [[ dy dx £x) (3, 411%) p(x, 11x0)

Putting these expressions together and using the uniform convergence of
the limits (A.2) and (A.4) to exchange the limit 47 — 0 and the integrals,
we obtain

0
= [0 ply 11 x0)
1
~favsw | ] dim o 0| sl
1
| tim 52 200 el | oG 1500

C 3 add

o N
x[};gmoz—zfu = P(y,AZIX)}p(X,lIxO)

1 2
dlim ] dyde(y=x)? Rty ) plys 4113 pls 1)

yek

and inserting (A.1)-(A.3), we obtain

=Jacse| W) p(s thxe) = W) plx £1x0)]
+ f dx dj;,(;) Di(x) p(x, t]x4)
+[ae s D by i 1)
+ ¥ jdx%i%f—) [ lim R,(z, 42, %)] p(x, 1] x0)
wtim [ dyde (v Ry ) ply, A1) plx t1x0)
Ar—>0 |x—yl<e

(A.10)
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This equality is satisfied for all ¢, and we can thus take the limit e >0+,
The three terms involving remainders vanish in this limit; For the first two,
using the uniform convergence (A.6) and the fact that the integral is over
a compact set, we can write

[ =R Clim, Ryt 41,001 s 130
dx 450
-~ ar
< Ryo) [ ax |28 i 11y

A

e1R(e) | dx plx, t]x0)

= Clkm(s)—e_‘,?

For the last term we notice by the same arguments that

S| _ 1 |dSE)

a | S831 g

1

IRy, )| =]y —x| e

<08

and therefore

1
fim | [|  dyde (y=x)? Ry, %) p(y, 41]) plx, 11x0)

At%OAt Ix~yi<e

vek

o1
e fim = dyde(y—x)? p(, A110) pix t1x0)

a0 At d1x_ y <e
yekK

cy Ll dx thigqozl—tj

e [ dx [Dy(x)+ Role)] plx, 1]%6)

A

VAN

dy (= x) p(y, Az|x>} p(x t]x0)

Ix—yl<e

VAN

< 36— 0
3 £>0

where K’ > K is compact. The final step is integration by parts in (A.10}).

Theorem 2. Let g(x, t|x,) be the t.p.d. of a Markov process subor-
dinated to a diffusion with tp.d. p{x,s|x,) by a proper subordinator
v(z)=cz+ | do(s) (1 —e ™) such that:

(a) p(x,s|xy) satisfies the conditions of Theorem 1, with
W{x|xy)=0.
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{(b) For t>0 and |[x —xy| >¢&>0, p(x, t|x,) is bounded.

(c) For t>0, g(x, t|x,) is continuously differentiable in ¢ and, if
¢ #0, twice differentiable in x.

Then q(x, f]| x,) satisfies for ¢>0 the equation

0
a q(xs tl xO)

= {m ;% [Di(x)q(x, t]xy)] +§; [Dy(x) q(x, l‘|x0)]}

+fdy [Wx 1) gl tixg) = W10 a(x, 11x0)] (A1)
with
Wil xo) =] | de(s) plx. s1:x0)
This is a consequence of Lemma 1 and Theorem 1.

Lemma 1. Under the conditions of Theorem 2 we have:

I. For x, in a compact set K<R and ¢>0 there are functions
S, (1, & x0), S,.(t, ¢), and S () such that

-lt-jlx_mse dx (x — x)" q(x, t] Xo) = eD,(x0) + Sult, & xo), m=1,2
(A.12)
and
1S, 8 X0)| < S, (1, £) 5> §,(6) —— 0 (A.13)

I For |x—xo| >¢>0 with fixed ¢, there are functions Sy (¢, &, x, X,)
and S, (¢, €) such that

1 o
240 tlx0)= | do(s) plx,s|xo) + Swltex %) (Al4)
and
‘SW(ts &, X, x0)| <‘§W(t> 8)'—1’?0 (AIS)

ie., one also has the uniform convergence in the subordinated process.

822/60/3-4-10
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Proof. 1. We start by expressing (A.12) as

lL dx (x — x0)" q(x, t| xo)

t X xXo| K&

-4

= %L@ d'})z(S)j dx (x — x4)" p(x, 5| x0) (A.16)

|x —xp| <&

de [x—xol" | " d(5) plx 51 xo)

|x —xp| <&

The exchange of the integrals is justified since
f dx % — xol™ g, 1] xg) <™ (A.17)
Jx—xol <€

We split the integral into three pieces:

J:)=j0ﬁ+j;+f (A.18)

where 7> 0 is an arbitrary constant. Using (A.1), we can write the first
integral as

J\/?

0

1
d(s)2c ] dr (e x)” ples|x)

[x —xol <¢
NGO s Ve s
= D(x) [ )3+ [ )= Ru(e 5. %) (AL9)
0 t Yo !
The first term can be written as
Ve s Ve s
D(xo) [ dnils) 2= D (x0) + Dlxo) | [ e (s)-—¢
0 t 0 t
where the difference can be bounded in K by

D[ e

The term involving the remainder in (A.19) can be estimated (for ¢ small
enough) using (A.6) as

e s
<sup 1D, [ dnfs) 3=

yek

s
<[ sup_ R,(sLo)1] dy(s);

s'e(0,/)

Ve s
[ 61§ Rt 0
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For the last two integrals of (A.18), we use (A.17) to obtain the bound

[PEXCH!

independently of x,. Further,

1
!

x—xol <¢

dx [x— xo|™ P, 1] X0) <&" jf &, (s)

m r l_ m—1/2 r l 1/2
| =T )7

r s

<8m—1/2j -

Ve

Putting the preceding estimates together, we can write the following
uniform bound:

1 T
dyz(s)_sssmil/zj‘ th(S)
! o+

1 p
'; fo dy,(s) fl dx (x—xo)™ p(x, 8] x¢) — D, (x5)| < S,.(t, €)

x—xpl < e

with

\/g N
Slts &) = sup D) || dils) e

yekK

’ \/E S
+0 sup R, o)1 [ dnis)?
s'e(0%, /) 0 t

om [ 1 mo1p2 (T s
+& L dy,(s)?+s fw dyt(s)t
We can now easily verify that lim, _, , lim,_, , S,.(z, ¢) = 0: Using Egs. (B.10)
and (B.4) of Appendix B, we obtain

. Vg
lim S, (t, &) = sup [D,,(») “ do(s)—c¢

vek

) NG

w0 sup R, (s, e)] j do(s)
s'e (0, /&) 0

(A.20)

o T
+e™ f do(s)+¢em 12 f do(s) s
T 0+

The integrability condition (2.12) on dp(s) guarantees that the integrals are
finite. Finally, invoking (B.5), one sees that (A.20) vanishes in the limit
e—0.
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II. The expression (A.14) for the jump rate can be obtained as
follows. Since

1 1 e
—q(x tixg) == | d(s) plx, 51%6)
t tJy

the remainder term of (A.14) can be written as

Swtsox 30 = [ dn(0) 7 ol slvo)= | )l s1x0)

- LOO

[ .61 1= dets) | . s10)

s p(x, 5[ xo) px, 5]xo)
s

+ i)’ ~ | dets)s

where >0 is an arbitrary constant. The first integral can be bounded by

F

T

1
| d05) o) | sl

<O oswp plxs' x| |dts) s dots)
s'€ (0%, )
|x —xg| > ¢

The supremum is finite according to the condition (b) of the theorem. For
the second and third integrals we use (A.3) for the special case of a
diffusion, and obtain the bound

prs|x0) p(x, 8| xo)

+ jo do(s) s

- U d1,(5) Rupls, 5% xo)| +
0

[ do(s) sRy (s, %, x0)
[

<[ sup Ryls,e)] U )+ ] da(s)s}

sef0,7]

We can now put the preceding estimates together to obtain

!S (t’ & X, x0)|

[ 17 ptos o) [ dots) ot 5130
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o0 1
<Cswp plusizgl || o) - dets) |

s'e(0F,0) T
|x—xpl >e
. t s (7
+Lswp Kool [ [ 3o [ s |
s e[0,7] 0 I Jo+
= 8,(1,¢)

If we take the limit 7 — 0, the first term vanishes due to (B.1), and the last
two terms give

lim $,(t,e)=[ sup Ru(s,e)] [rda(s)—i—Jr da(s)]
=0 s'e[0,7] 0 o+

Since t is arbitrary and it does not appear on the left-hand side, the
inequality is still valid in the limit 7 — 0*. In this limit the terms in the
curly brackets tend to ¢ [by Eq. (B.5)] and the term in the square brackets
tends to zero.

APPENDIX B

In this Appendix we discuss some properties and relations connecting
dy (s), v(z), and dg(s), and deduce Eq. (3.4). We will use the step function

0 for s<0
0(s)—{1 for s=0

Lemma. (i) The measure dy,(s) is related to dg(s) by the following
weak limit:

1
do(s)= lim ;dy,(s) in (0F, o) (B.1)
t—0*

i.e., do(s) is the jump rate of the subordinator.

(ii} The subordinator has a drift equal to c.
(iii) It has no diffusion.

Proof. We will use the following facts'”): Since, according to (2.10),
v/(z)=dv/dz is completely monotone, it has a positive inverse Laplace
transform da(s):

V(z)= j:o do(s) e~ (B2)
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By integration one obtains the representation (2.11) for v(z):

Wz)=cz+ f:’ do(s) % (1—e") (B3)

ie.
4= i (0%, ) (B4)

and
c=0(0*)—5(0) (B.5)

(i) We will prove (B.1) using the uniqueness of the inverse Laplace
transform: From (2.7) we have

e " = jw dy(s)e > for z=0 (B.6)

0

By differentiation with respect to z we obtain

Vi(z)e "@ = jw dy,(s)fe'“ (B.7)
0 t
and therefore
. *® §
v/(z):hmj &, (s)=e ¥  for z20 (B.8)
1509 t

Comparing with (B.2), we obtain

1imj°o dv,(s);e‘”zjow do(s)e==  for z>0 (B.9)

t—=0vo
By the continuity theorem of P. Lévy (see ref. 24), this implies

1in%dy,(s)“—;=da(s) in [0, ) (B.10)

and thus (B.1).
(ii) The drift is given by

1 re e
lim lim — dy,(s)s:limJ do(s)=c¢
e=0:-01Jg e—=0+Yq
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(iii}) The diffusion coefficient is given by

1 £
lim lim — dy,(s)s —llmf do(s) s < lim sj do(s)=0
e—0 0

e—=>0r-0

Lemma. The subordinator measures dy'®(s) and dy“(s) corre-
sponding, respectively, to a subordinator v(®(z) without a linear part (i.e.,
c¢=0) and to v9(z) = cz + v'¥(z) are related by

dy'Ns)=0(s — ct) dy O (s — ct) (B.11)

Proof. Tt follows immediately from (2.7) and

joo dy (s —ct) B(s—ct)e™™
0
= Jm dyO(r) e~ e~ = g~ Lo+t (B.12)
0

Corollary. If ¢9(x, t|x,) is the subordinated tp.d. to p(x, t]|x,)
through ¢'%(x, t]x,) = [ dy{®(s) p(x, 5| x,), then the process subordinated
through dy!'“(s) has t.p.d.

4x, thxo) = [ (s —et) 05— 1) p(x 51x,)
=" &) plos, r+ et x0) (B.13)
0

Corollary. The tp.d ¢ and ¢'% are related by both of the
following equations:

4% 1) = | dv plx, c1]y) g, t]x0)

=" a0 tly) ps et xo) (B.14)

Proof. Using the two forms of the Chapman-Kolmogorov equation

|7 @y plx ct1y) p(y. 51x)
plx, s+ct|xg)=¢ ~ (B.15)

e}

dy p(x, s|y) p(y, ct| xo)

— 0
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we can write

¢ t1x0)= |~ dV(s) plx, s+ et xo)

o0

dy p(x.crly) | dis) plys] %)

[s.o}

I
7 a7 st | ot crix)
I
I

o0

[ee]

dy p(x, ct|y) ¢y, t]xo)

(B.16)

o0

dy ¢(x, 1] y) p(y, ct| xo)

@

which is (B.14).

APPENDIX C

In this Appendix we deduce the Kramers-Moyal expansion for a
process subordinated to the Wiener process and relate its coefficients to the
Taylor expansion at zero of the analytic subordinator v(z).

The Kramers-Moyal expansion is a formal way to write the
Kolmogorov-Feller equation (1.1) as a linear partial differential equation
of infinite order:

=) Vl an
at q(x, 11x,) = 2:: oY (x, 1] x0)]
The coefficients #,(y), if they exist, are given by
. 1 poo <]
mi)=lim [ dx(x—xolq(xe1y)=] dx(x—xo) Wix|y) (C1)

(provided that one can exchange the limit and the integral).
From the pseudodifferential equation (4.5), we deduce formally an
expansion

0 1 92
Satn 0= v (= 35 atx 113

vf"’3<0)( 152)”( £]xo)
— == qlx, t|x
. Al 2 ox? 0

B 3] (_1)n+1v[n/](0) aZn
2"n! ox™

18

n

q(x, t]x,) (C2)

i
g
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where we have denoted vI¥1(z) = (d*/dz*) v(z). We notice that if v(z) is
analytic, we obtain

VI0) = oy, + (—1)" " | ofdr) 1"
0ot

Thus, (C.2) can be written as

2

0
g t1x0) =5 23 (% 11%0) + 3

0
o1 e}

1 0
il D o(dr) r”}

2n

Xmlﬂx’ t)xq)

On the other hand, if we compute the Kramers—Moyal coefficients, using
(C.1), we find that

Jﬁw (z—x)" W(z|x)

o0

e (z—x)2/2r

J (dr f daz (Z—X)nW
0 for n odd

(2n)!
2™n!

JOO oldr) "+ ¢6,, for n even
o+

[A sufficient condition for the validity of these calculations is
&> o(dr) r'? < o0.] The two expansions are thus identical.
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