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We study Markov jump processes constructed by subordination of diffusion 
processes. The procedure can be viewed as a randomization or a coarse graining 
of time. We construct the master equation for the cases of finite and infinite 
total jump rates, and give a collection of explicitly solvable examples. 
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1. I N T R O D U C T I O N  

M a r k o v i a n  s tochast ic  processes are used to mode l  a wide range of physical ,  
biological ,  and  engineer ing phenomena .  (1 3) Diffusion processes governed  
by F o k k e r - P l a n c k  equat ions  are quite well unders tood ,  and  there are 
many  explici t ly solved examplesJ  4~ Much  less is known  for processes with 
jumps ,  in pa r t i cu la r  when there is an infinite number  of j u m p s  in a finite 
t ime interval.  In  the present  work  we discuss a me thod  that  al lows us to 
cons t ruc t  M a r k o v i a n  processes with jumps ,  for which one can de te rmine  
explici t ly the t rans i t ion  p robab i l i t y  and  many  o ther  propert ies .  The 
processes are cons t ruc ted  by subord ina t ion  of diffusion processes. This 
procedure ,  i n t roduced  or iginal ly  by Bochner,  (5'7~ can be in terpre ted  as a 
r a n d o m i z a t i o n  or  a coarse  gra in ing  of  time. We will character ize  the con- 
s t ruc ted  processes by  mas te r  equat ions.  F o r  each k n o w n  diffusion process  
we can cons t ruc t  families of j u m p  processes with k n o w n  propert ies .  In 
par t icular ,  models  subo rd ina t ed  to the Wiener  and  the repulsive W o n g  
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processes can be characterized in great detail. The construction also 
provides models with combined diffusion and jumps. This method was used 
by Hongler (8'9~ to construct exactly solvable jump processes. 

Assuming some regularity conditions, the transition probability den- 
sity p(x, t lXo) of a homogeneous Markov process (with values in the reals) 
satisfies the following integrodifferential equation (Kolmogorov-Feller 
equation): 

g g g2 
~t p(x, t l Xo) = - ~xx [DI(x) p(x, t[ Xo)] + ~ [D2(x) p(x, t[ Xo)] 

+~dy[W(xLy)p(y ,  t l xo ) -W(yLx )p (x ,  tLxo) ] (1.1) 

where Dl(x) is the drift, D2(x ) is the diffusion coefficient, W(xly) is the 
jump rate density, and ]2 denotes the Cauchy principal part of the integral. 
Through subordination we will obtain either processes containing the three 
components--drift, diffusion, and jumps--or  pure jump processes, with 
finite or infinite total rate. The construction also provides a simple way to 
express the master equation in the form of a Kramers-Moyal expansion. 

The paper is structured as follows. In Section 2 we describe the proce- 
dure of subordination and give some exaples of subordinators. In Section 3 
we discuss general properties of processes subordinated to diffusion 
processes, referring in particular to their master equations. In Sections 4 
and 5 we treat the particular cases of subordinating the Wiener and the 
repulsive Wong processes. In the Appendices we give the proofs and discuss 
some more technical aspects. 

2. S U B O R D I N A T E D  P R O C E S S E S  

We will summarize the method of subordination of Markov processes, 
which was developed by S. Bochner. A complete discussion can be found 
in refs. 7 and 10. The main idea is the following. We start with a time- 
homogeneous Markov process with transition probability density (t.p.d.) 
p(x, t lXo), and define a new function q(x, t LXo) by 

q(x, tlXo) = dT~(s) p(x, SlXo) (2.1) 

where dTt(S) is a measure that depends parametrically on t and is called the 
subordinator measure. If dTt(s) satisfies certain conditions, q(x, t l xo) will 
be the t.p.d, of a new Markov process. The required conditions can be 
stated in the following three equivalent forms: 
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A. 7~(s) is the transition probability distribution of a process with 
positive independent increments (i.e., a positive, infinitely divisible 
process)(m: for all t, 7~(s) is a nondecreasing function of s such that (i) 

odT , ( s )  = 1 for all t/> 0 (2.2) 

7 , ( 0 ) = 0  for all t~>0 (2.3) 

7 , = o ( 0 + ) -  7~=o(0) = 1 i.e., dT~=o(s)=5+(s)ds (2.4) 

where 6+ (s) denotes a Dirac delta function defined on the positive reals: 

{01 s = O  5+(s) ds-dO+(s) ,  O+(s) - (2.5) 
s > 0  

and (ii) it satisfies the Chapman Kolmogorov equation on the positive 
reals: 

f; 7, + r(S) = 7,(S -- V) dTr(v) (2.6) 
= 0  

We use the notation f (0  +) - l i m s ~ o + f ( s ) ,  where the limit is taken 
through positive values of s. 

Property (i) allows one to interpret the subordination as a randomiza- 
tion of time: One looks at the process at random times s with a probability 
distribution given by 7t(s). When we discuss the relation with a master 
equation we will see that it can also be viewed as a coarse graining of time. 

Property (ii) states the Markovicity of the subordinator and guaran- 
tees that the new process is also Markovian. 

B. The distribution 7~(s) can be characterized by its Laplace trans- 
form, which, since dT~(s) is positive, is a completely monotone function for 
all t. The conditions (i) and (ii) are expressed by requiring that it can be 
represented as 

f odT , ( s )  e ":=e -'v(~) for z~>0, t~>0 (2.7) 

where v(z) is a continuous function satisfying 

for z = 0: v(0) = 0 (2.8) 

for z > 0 :  v(z) > 0 and is smooth (~ ~176 ) (2.9) 

and its derivative is a completely monotone function: 

d n 
(--  l)n+ 1 ~ I / (Z) )0 ,  n = l ,  2 .... (2.10) 

a z "  
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We will refer as subordinator interchangeably to the process, the measure 
dy,(s), and the function v(z). 

C. It can be shown (7) that the most general subordinator v(z) can be 
represented as 

;$ v(z)=cz+ lim dQ(s)(1-e -sz) (2.11) 
~ 0  + 

where c >/0 is a constant. The condition (2.10) is equivalent to requiring 
that dQ(s) is positive on (0, oe). Furthermore, dQ(s) must satisfy the 
following integrability condition at 0 and at oo: 

1 oo 

fo do(s)s+f d a ( s ) < ~  (2.12) 
+ 1 

As shown in Appendix B, do(s) is the jump rate of the subordinator, since 
it is related to dT,(s) by the following weak limit: 

d0(s)= lira ldy,(s) in (0 +, oo) (2.13) 
,~o+ t 

Further, the constant c is its drift, and it does not have a diffusion part. We 
distinguish two types of jump processes: those with a finite and those with 
an infinite total jump rate, which, according to (2.7) and (2.11) (for c = 0), 
can be expressed as 

Io  dO(s) = v(oo ) 
+ 

and e- ' (~176 = yt(O + ) - yt(O) (2.14) 

The subordinator is called proper if the q(x, t L xo) obtained by subordina- 
tion to a process with a density p(x, t lXo) is also a density. This is the case 
when q(x, t tXo) is measurable and the following equivalent conditions are 
satisfied: 

(a) lim v(z)= oe (2.15) 
z ~ o o  

(b) y,(0) = yt(0 + ) (2.16) 

fi (c) dQ(s) = 0% or c # 0  (2.17) 
+ 

A nonproper subordinator thus has a finite total rate and therefore its 
distribution can be written as (1~ 

dy,(s)=e t~(~),5+(s) ds+ [1 - e  -'v(~176 dy~+)(s) (2.18) 
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In this case, the subordinated q(x, t] Xo) consists of a density plus a term 
with a delta function (see Section 3). 

A proper subordinator with c = 0 has infinite total rate. If c ~ 0, the 
subordinator is proper, independent of the type of jump. As we will see, the 
type of jump is transmitted to the subordinated process. 

A useful property is that if vl(z) and Vz(Z) are both subordinators, 
then 

v~(v , (~) )  [and, as a consequence, Vz(flz), for fl > 0] (2.19) 

and 

elvl(z)+~2v2(z) for at,  ~2 >0  (2.20) 

are also subordinators. (7) Furthermore, we will see that the existence 
of moments of the new process depends on the differentiability properties 
of v(z) at z = 0 .  It is useful to introduce the concept of regularized 
subordinator: To any subordinator v(z) we can associate a family of 
subordinators v~(z) depending on a parameter fl ~> 0 defined by 

r e ( z )  - v ( z  + fl) - v ( f l )  (2.21) 

v~(z) is again a subordinator, since it satisfies the conditions (2.8) (2.10). 
For f l > 0  it is smooth (~o.) at z = 0 .  It is easy to verify using (2.7) that the 
subordinator measure associated to the regularized v~(z) is given by 

dy L,(s ) = dy ,(s) e,V(~)e- S~ (2.22) 

Examples 

We will discuss a family of subordinators that can be represented in 
the general form 

v(z)= ~ [ ( f l+  Oz)~--fl ~] (2.23) 

where e, fl, ~ > 0 and ~ > 0 are constants with ranges 

(I) fl=O, O<c~<l  

(II) f l>0 ,  --oc < c ~ < l  
(2.24) 

~c and 0 are time scale normalizations that we will use only to get simpler 
expressions in the examples by choosing them appropriately. 

822/60/'3-4-9* 
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Case I consists of all stable processes with positive increments.  The 
case c~ = 0, fl > 0 is to be interpreted as the limit e -~ 0 of (2.23), giving 

v ( z ) =  ~cln (1  + ~ )  (2.25) 

Case II  for c~ > 0 is a regularizat ion of I. Negat ive values of c~ lead to 
nonprope r  subordinators .  

The corresponding representat ion (2.11) is: (1) if c~ = 1 and/3  >/0 

c = to0, 0 = 0 (2.26) 

(2) I f O < a <  1 and fl~>O, or - G o  < ~ <  1 and f i>O,  

c = O ,  do(s) - -  s -~ l e - " a d s  (2.27) 
r (1 -~)  

where F(x) is the g a m m a  function. 
The subord ina tor  measure  dT~(s) is known only for some special 

values of a: 

(i) /3>0:  

(ii) /3 = O: 

c~= 1: &,(s)=,~+(s-~cOt)ds (2.28) 

~ = 0 :  

a = --1: 

Q~) kt skt  1 
d T t ( s  ) = ~ e -3~/0 ds  

/ t \1/2 
dy,(s) = e-t~/'6 + (s) ds + k| ~SS | / 

(2.31) 

e t,/ ,-  ~-3/all 2 ds 

(2.32) 

where Ii(r ) is a hyperbol ic  Bessel function. (12) This last example  is a non- 
proper  subordinator .  

1 / 0 \1/2 
dT,(s)=tct~s3 ) e ~2a'2/S ds (2.29) 0~ -~- -~ " 

dy,(s)=-~--ff \ - ~ - j  ,/3 2 ds (2.30) 

where Kv(r) is a modified Bessel function. 112) 

(iii) fl > 0: The  measures  for e = 1/2 and ~ = 1/3 can be constructed 
immediately  f rom (2.29), (2.30), and (2.22). Fur thermore ,  
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3. SUBORDINATION OF DIFFUSION PROCESSES 

Since the subordinated process is Markovian, its t.p.d, q(x, t lx0) must 
satisfy an integrodifferential equation of the type (1.1).(3) In Appendix A we 
prove the following result: If the t.p.d, p(x, t Ix0) of the original diffusion 
process satisfies the Fokker-Planck equation 

a x I x o ) = ~  Np(  , t [-Z)l(X) p(x, tlXo)] 

1 6 ~2 

2 c~x 2 [-D2(x) p(x, t l Xo)] "- LFp (3.1) 

then the t.p.d, of the process subordinated with a proper subordinator 
satisfies 

{ 0  1 6  2 } 
- & q(x, t[ Xo) = c ~x IDa(x) q(x, t l Xo)] - ~ ~ x  2 [D2(x) q(x, t t Xo)] 

+ ~  dyEW(ylx)q(x, t l xo ) -  W(xly)q(y, tlxo)] (3.2) 
--oo 

The symbol ~- denotes the principal part of the integral. The jump rate 
W(xFxo) is given by 

s oo 

W(xlxo)= do(s) p(x, SlXo) (for I x - x o l  > ~ > 0 )  (3.3) 
O+ 

and the constant c and the measure do(s) are those defined in the represen- 
tation (2.11) of v(z). 

Remarks. 1. Equation (3.2) implies that the nature of the trajec- 
tories of the subordinated process is determined exclusively by the sub- 
ordinator (i.e., it is independent of the initial diffusion process): If one 
chooses c = 0 in (2.11), one gets a pure jump process. If c r O, do(s)# O, the 
subordinated process has jumps and diffusion. If cr do(s)=O, one 
recovers the original diffusion with a rescaled time. 

2. The expression (3.3) for the jump rate allows us to give an 
intuitive interpretation to subordination (for c = 0 ) :  In a time unit, the 
transitions through jumps correspond to a weighted average of the under- 
lying diffusion. Thus, by looking only at a coarse-grained time, the 
accumulated diffusion appears as jumps. 

3. By subordination we can construct processes that involve both 
jumps and diffusion. The t.p.d, q~C)(x, t lXo), solution of (3.2) for c # 0 ,  
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can be obtained from the t.p.d, q(~ t] Xo) of the pure jump process [i.e., 
setting c = 0 in (3.2)] and the one of the original diffusion process as 

q(C)(x, t l xo )=  dyp(x ,  ctly) q(~ t[xo) 

= dy q(~ t I y) p(y, ctlxo) (3.4) 

This result is deduced in Appendix B. 

4. Equations (3.1) and (3.2) can be written formally as 

c~t p(x, t l Xo) = q)o(X) H [p(x,  t ! xo ) ]  (3.1a) 
L eo(X) J 

and 

8 
8t q(x, t l Xo) : qOo(X) v(H) F q(x' t[x~ 

L ~Oo(X) ] 
(3.2a) 

where H is the self-adjoint (Schr6dinger) operator defined by 

1 1 0  8-~ /4---~Oo(X) LFq~o(X) = ?2-g-x D2(x) + V(x) (3.5) 

and q)02(x) - Pst(X) is a stationary solution of (3.1). This representation is 
easily obtained using formal eigenfunction expansions of H. We discuss two 
examples in Section 4. 

3.1. Nonproper Subordinators 

The total jump rate of the process constructed with a nonproper sub- 
ordinator can be expressed using (3.3) and (2.11) as 

lim dx W(x[xo) = dx dQ(s) p(x, S lXo) 
e - - * O  i x - x 0 1  > z  ~ + 

= dQ(s)=v(oo) (3.6) 
+ 

i.e., if the subordinator has a finite total rate v(oo), it will also be the case 
for the subordinated process, independent of the original diffusion. 

A proper subordinator will lead to a process with jumps of the same 
type as its own. 
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It is well known (1~ that if the total rate is finite, the process typically 
stays at a fixed position between jumps during a finite time interval. In our 
case, the t.p.d, constructed with a nonproper subordinator v(z) can be 
written in the form 

q(x, t lXo)= dy,(s) p(x, six0) 

: UTt(o + ) -  vt (o) ]  p(x, 01Xo) + + dv~(s) p(x, s lxo) 

= e-'~(~ Xo)+ [1 - e  -t~(~~ q(+)(t, x, Xo) (3.7) 

i.e., q(x, tlXo) consists of a density q(+~(t,X, Xo) plus a delta function. 
Before each jump the system stays at a fixed position Xo for a time interval 
governed by an exponential distribution with mean decay time i/v(~). 

The fact that if c :~0 the subordinator is always proper has the 
intuitive interpretation that, if the process has a diffusion or a drift part, it 
cannot stay at a fixed position for a finite time interval. 

Since q(x, t J Xo) is not a density, the conditions we require for the con- 
struction of (3.2) (see Appendix A) are not satisfied. One can, however, 
easily construct the master equation for the probability distribution 
Q(A, t rXo) for transitions from a point x0 into a set A: Equation (3.7) 
becomes 

Q(A, tlXo)=e-tV(~ + dTt(S) dx p(x, slXo) (3.8) 

where )~A(Xo) is the indicator function of the set A. For  a small time At we 
can write 

Q(A, At lxo) = e- A'vr176176 + At + dQ(s) 

x fA dx p(x, S lXo) + r(A, At, Xo) 

with a remainder of o(At): 

r(A, At, xo)= At fo+ IdT~t(s) l - d ~ ( s )  ] 

x fA dx p(x, S]Xo) = o(At) 

(3.9) 

(3.1o) 
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due to (2.13). This is the condition required to apply Feller's result ~13) to 
obtain 

at Q(A, t l Xo) = clx W(x ly )  Q(dy, t L Xo) 
- -  o 0  

- v(oo) [ Q(dx, tlXo) (3.11) 
JA 

with 

W(x [ xo) = + do(s) p(x, S[Xo) (3.12) 

3,2. Sta t ionary  States 

Assuming that the diffusion process (3.1) has a stationary state Pst(X) 
that satisfies detailed balance, we can show that the subordinated process 
has the same function Pst(X) as stationary state [i.e., qst(X)= pst(x)] and 
it also satisfies detailed balance. The condition of detailed balance can be 
expressed as 

p(x, tly) pst(y)= p(y, t lx) Pst(X) (3.13) 

The definition (2.1) implies that 

q(x, t l y) P~t(Y) = q(Y, t l x) Pst(X) (3.14) 

so we have to verify, using this relation, that p~t(x) is a time-independent 
solution of (3.2), i.e., 

;~  dy[W(ylx)  p~t(x)-  m(xty)  Pst(y)] ~ O  
--oo 

which follows immediately from (3.14) and W(xly)=limt~o.(1/ t  ) 
q(x, t l y). 

4. S U B O R D I N A T I O N  OF W I E N E R  PROCESSES 

One can characterize quite generally the processes subordinated to the 
Wiener process by an arbitrary subordinator v(z). It follows from the 
definition (2.1) that since the Wiener process is homogeneous in space [i.e., 
p(x, t] Xo)= p (x -Xo ,  t l0)], the subordinated process will also be so. We 
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recall that the t.p.d, p(x, tlXo) and the characteristic function q5 of the 
Wiener process are given, respectively, by 

p(x, t] Xo) = (2~t) -1/2 exp 
- ( X - X o )  2 

2t 
(4.1) 

and 

The characteristic function of the subordinated process ~v is obtained 
immediately from Eqs. (2.1), (2.7), and (4.2) as 

cbv(u, t) = exp[  - tv(u2/2) - ixou ] (4.3) 

which leads to 

q(x, tFXo ) =-1 du c o s [ ( x -  Xo) u] e -'v("2/2) (4.4) 

The equation for the time evolution can thus be formally written as 

1 2) 
which is a special case of (3.2a). We remark that the subordinated process 
can be decomposed into a sum of two independent processes, one a Wiener 
process and the other a pure jump process. This is easily seen by looking 
at the characteristic function (4.3), which can be factorized using (2.11) as 

qS(u, t) = e x p ( -  teu2/2- ixou) exp - + o(dr)[1 - e x p ( - r u 2 / 2 ) ]  (4.6) 

The representation (3.2)-(3.3) gives us the interpretation of the second 
factor as the characteristic function of a pure jump process. 

4.1. M o m e n t s  

If the characteristic function is n + 1 times continuously differentiable 
in a neighborhood of zero, then the first n moments exist. (14) Thus, for 
processes subordinated to a Wiener process the existence of the moments 
depends on the differentiability of the function v(z) in the neighborhood of 
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zero. If v(z) is analytic, all the moments exist. If we apply this criterion to 
the family of subordinators (2.23), we obtain the following results: 

1. For fl > 0 all the moments exist. 

2. For  f l=0 :  If 1 / 2 < a <  1, the first moment is zero and all other 
moments do not exist; if a ~< 1/2, no moments exist. 

In the case where v(z) is analytic, we immediately obtain a develop- 
ment of the form 

a ( - 1 )  k c~ 2k 
8tq(x, ttXo)= ~ 2kk! qk~Xzkq(x, tlXo) (4.7) 

k = l  

with 

~z kSk v(z) z=o c+ +0( r for k = l  
= (4 .8)  qk 

(-- 1)k , f r k ( Q(dr) for k ~> 2 
Jo + 

which is indeed the Kramers Moyal expansion of the subordinated process 
(see Appendix C). 

4.2. Examples  

We will denote the subordinated process by {~(t)},>~o and the condi- 
tional moments by 

f~ dx(x-xo)~q(x, tlXo) - ( [ ~ ( t ) - X o ] ~ ) ~ o  

I. As a first example, we consider the Wiener process subordinated 
with v(z)= ~O~z~/e with ,9 = 2 and ~c--~. 

It is well known (v) that this choice of v(z) leads to the symmetric stable 
Ldvy processes of index 2~. (15) The t.p.d, is given by 

q(x' t lx~ fo  due-'U2~c~ x~ (4.9) 

These processes have applications in the study of the renormalization 
group, (16) relaxation in polymers, (t7'18) and anomalous diffusion. ~9) For 
some special choices of ~ the integral (4.9) can be expressed in terms of 
special functions: 
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(i) ~ = 1/2 leads to the Cauchy process." 

t 

q(x, t I X0) -- ~E/2 "t- (X -- X0) 2 ] 

(ii) ~ = 1/3 gives 

exp[ -2t3/27(x-  Xo)2? ( 4t 3 '] 
q(x, t lXo)= 21277c(X_Xo)2],/2 W_1/2.1/6 \27(~7_ Xo)2j 

21/3t3 

(3re) 1/2 Ix - x017/3 

( ~ 4  4t 3 "~ 

G ;5;  2 7 ( x -  No)2/ 

where W,,~(z) is a Whittaker function and G(a; b; z) is a confluent hyper- 
geometric function, both functions being bounded when z tends to infinity. 

(iii) c~ = 1/4 leads to 

t2 ~1/2 fCOS (4 t2 .'~1__ t 2 

t 2 ~ 1  S (  4\ t 2 

where S(z) and C(z) are the sine and cosine Fresnel integrals. 
We can easily compute the jump rate for all c~c (0; 1) using the 

formula (3.o). 

WCxlxo)= 
F(2cr + 1) sin(roe 0 

re I x - x o r  ~ + *  

As we have seen from (3.2) and c = 0, these processes consist exclusively of 
jumps for all c~. It is interesting to contrast this fact with the dependence on 

of the fractal Hausdorff-Besicovitch dimension Hf of the trajectories in the 
(t, ~(t)) plane{2~ 

i ir 
H+.= l 1 

-2--~ if ~ < c ~  1 

with probability one. We finally remark that since the L6vy processes do 
not have moments, 4 they do not admit a Kramers-Moyal expansion. This 
follows from the fact that v(z)= z ~ is not analytic at zero. 

4 Except the first moment, if 1/2 < e < 1. 
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II. Next  we give an example of a process with combined jumps and 
diffusion, by taking v(z )= cz + z m. This leads to a characteristic function 

qS(u, t) = e x p ( -  t( u2 /2 ) - t lul - iuxo ) 

and a t.p.d. 

q(x, t ] X o ) -  2(2~t)1/2 2t J erfc \ (2t)u2 ) 

] erfc 
where e r fc (z )=  l - e r f ( z ) ,  and erf(z) is the normalized error  function. (2i) 
This process is the independent  sum of a Wiener and a Cauchy process. Its 
jump rate is that  of the Cauchy process: 

1 
W(xlxo) = 

~ (X-Xo)  ~ 

This process has no moments  and hence no K r a m e r s - M o y a l  expansion. 

III. As a third example, we take the subordinator  v ( z )=  
~c/~[(/3 + Oz) ~ -/3~],  choosing the constants /3 > 0, 0 = 2//3, and ~ = t~1/3~ 
for e r 0, and ~ = 1 for e = 0. The t.p.d, is then given for ~t e [0; 1 ) by the 
integral 

q(x, tLXo) exp(t/32~) f ~'~- duexp[ - t ( / 32  +u2) ~] cos(u IX-Xo])  (4.10) 
7Z Jo 

and the jump rate is 

W ( x t x ~  r(1  _ ~  K~ + l/Z(fl Ix-xol) 

Since v(z) is an analytic function in the ne ighborhood of z = O, we can write 
a Kramers Moyal  development. Using the result of Appendix C, we obtain 

f O for n odd 

~l,, = ~F(n/2 -- ~t) n! 

(i) For  the value e =  1/2 the integral (4.10) can be evaluated 
explicitly: 

efltflt 
q(x, t l Xo) = ~ [t 2 + (x - Xo) 2 ] 1/i Kl(fl( t2 + (x - x0)2) 1/2) 
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The conditional moments  can also be computed for c~ = 1/2: 

( [~ ( t )  - Xo]" )~o = ~-~)/2 
( ~ )  U ( ( n + l ) / 2 )  K(n_ l)/2(flt) 

for n odd 

for n even 

(ii) 
gives 

For ~ = 0 ,  the expressions become simpler: the integral (4.10) 

/~2, [~o u 2) - ,  
q(x, tlXo)=--~-jo du(~2+ cos(u ]X-Xo[) 

r ( t )  I x -  Xol K,_,/2(/~ I x -  xol) 

The jump rate becomes 
e-Blx-  xol 

W ( x l x o ) -  - -  
IX-Xol 

The conditional moments and the Kramers-Moyal  coefficients qn are 

t ~ ( [~ ' ( t ) -  x~176 = F(n /2+t )  

~"r( t )  

n! 

F(n/2 + 1 ) 

for n odd 

f 0  for n odd 

t/n= 2 ( n ~  1)! for n even 

for n even 

5. S U B O R D I N A T I O N  OF R E P U L S I V E  W O N G  P R O C E S S E S  

The repulsive Wong process is a diffusion process with drift O l ( X  ) = # 
th(a; #x) and diffusion coefficient D2 = 1. Its t.p.d, is given by 

-- ( x  x o ) 2 / 2 t  ch(a; #x) ,u2t/2 e 
p(x, t l Xo) - ch(a; #Xo) e (2~t)u 2 

Its Fokker  Planck equation is 

c~ 0 1 c3 2 
c~t p(x, t t Xo) = ~xx [-# th(a; #x) p(x, t] Xo)] - ~ ~ p(x, t f Xo) 
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where we have introduced, for a I> 0, the notations ch(a; z) = (e ~ + ae-:)/2 
and th(a; z) = c h ( - a ;  z)/ch(a; z). 

This process belongs to a class of exactly solvable models that can be 
constructed by modifying the spectrum of the Wiener process. (22'23~ The 
Wong process has the following (conditional) characteristic function: 

q~(u, t) = e ,,2/2-i~xo ch[a; #(x0 - iut)] 
ch(a;/~x0) 

If the subordinator is analytic in a neighborhood of zero, we obtain the 
following (conditional) characteristic function: 

e-~m (e~XO-tv(~z/2+,~U)+ae #xo  tv(y2/Z--i,uu)) 
~v(U, t) = 2 ch(a; #Xo) 

and hence all the moments exist. The t.p.d, of the subordinated process is 
given by the integral 

ch(a;#x) 1 f o  due tv(u2+#2)/2COS(bl IX--Xo/) (5.1) q(x, t lXo) ch(a;#xo) 

which can be formally seen as the solution of the time-evolution equation 

a ( 1  a 2 u2"~q(x, tlXo) 
~?t q(x, t lx0) = ch(a; #x) v 2 c~x 2 t- 2 )  ch(a; #x) 

The jump rate is given by 

, ch(a; #x) 1 oo 
W(x Xo)= ~ (2s fo+ de(s)e ~2"/2-(x-x~ 

The Kramers-Moyal  coefficients can be expressed as an integral [-at least 
when S~~ do(s)s1/2< oo]: For n odd 

n! th(a; #xo) . I f  q , (Xo)-  (2~)1/2 -~+ de(s)s "/2e u 2 " / 4 [ ( ~ - , - , ( - # x / s )  

- @-, - l ( #  , , /7)] + c# th(a; #Xo) 61., 

and for n even 
n! f~ 

tln(Xo) -- (2g)1/2 j0 + dQ(s) sn/Ze--~2s/4[~_n 1(--# ~ )  

+ 9_~ 1(# ,/7)3 + 

where @v(Z) is a parabolic-cylinder function, and 6j, l is the usual Kronecker 
symbol. 
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E x a m p l e s  

We take again the subordinator v ( z )=~c /~[ ( /3+&y- /3  ~] with 
/3>0, 0=2//3, and ~c= le[/3~ for c~va0 and tc= 1 for ~=0 .  The case where 
/3 = 0 is recovered as a trivial limit, so we shall make only some remarks 
concerning its particularities when necessary. The t.p.d, is given for 
c~ e [0; 1) by the integral 

ch(a; #x) e ~/~ r "~ 
- j, due-'~P2+~2+"2)~cos(u tX-Xol)  (5.2) q(x, t lXo) ch(a;#x0) ~z 0 

and the jump rate by 

~2~+ 1/2 ch(a;/,zx) ((/32 ...[_ ~2)1/2,~or 
W(x I Xo) = ~ 7 ~) ch(< ~Xo) \ ~7-- ~ ) 

• K~+ 1/2((/3 2 + / / 2 ) 1 / 2  Ix - -  X0] ) 

1/2 

The conditional moments and the Kramers Moyal expansion exist if 
f l>0 ,  due to the analyticity of v(z) at zero, but not for /3=0. The 
Kramers-Moyal coefficients for /3 > 0  also have a general expression in 
terms of special functions: 

~ - s  +1 F ~ - ~ - - - c ~  ~th(a;#xo)  

x(/32+#2ff In+1)/22F 1 ~ + l , - ~ - - ~ ; ~ ; f 1 2 - ~ #  5 f o r n o d d  

~n(x0) = 

2 ' 2 -  e; 2 ;/32 for n even 

where 2Fl(a, b; c; z) is the Gauss-hypergeometric function 

(i) For ~ = 1/2 the t.p.d, can be calculated: 

ch(a; #x) e t~2~ 
q(x, t[ Xo) = 

ch(a; #Xo) 

t(/3 2 + #2)1/2 

It 2 + (x - Xo) 2 ] ,/2 

x K1((/3 2 + u2)1/2 i-t2 + ( x -  Xo) 2] 1/_,) 

We remark that for fl = 0, we recover the Hongler process. (8~ 
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(ii) For c~ = 0 the expressions are much simpler. The t.p.d, is given by 

fi ch(a;/~x) // fi2 I x -  Xo[ ~t-1/2 
q(x, t l Xo) - ~ F( t ) ch(a; #Xo) \2(fl  2 + #2)1/2j 

x K,_ , /2((f i  2 + /,/2)1/2 IX - -  X01 ) 

the jump rate is 

ch(a;/tx) e x p [ -  (f12 + #2)t/2 Ix - Xo[ ] 
W(XlXo) = 

ch(a; #Xo) I x -  xol 

and the conditional moments are, for n odd, 

2/~2'n[ 
(Eft(t) - xo] n )xo-  

and for n even, 

( E r  

r ( (n  + 1)/2 + t) 

r((n + 1 )/2) F(t) 
• # th(a; #x0)(fl 2 + # 2 ) - t - ( , +  1)/2 

x2F1 + t , ~ +  1;~; f12-~ 

2fiZt(n - 1)! F(n/2 + t) #2)-t-n/2 
r(n/2) F(t) (fi2 + 

x2F1 + t ,  2 '2 ' f l2  

The coefficients of the Kramers Moyal development simplify to 

(n - 1)! th(a; #Xo) 
B2~ 

x { [(~2 + u2)1/2 + u ] .  _ [(~2 + u2)1/2 _ ~ ] . }  for n odd 

for n even 

It is interesting to compare this process, which is Markovian, with the non- 
Markovian process appearing in ref. 9. 

A P P E N D I X  A 

In this Appendix we deduce, under some regularity conditions, the 
Kolmogorov Feller equation (3.2) for a process subordinated to a time- 
homogeneous diffusion process by an arbitrary proper subordinator. 
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T h eorem 1. Let p(x, t lXo) be the t.p.d, of a Markov process 
satisfying the following conditions. 

(i) For Xo in a compact set K c  ~ and ~ > 0  

1 [  dx (x -xo )mp(x ,  tlXo)=D,,(Xo)+Rm(t,e, Xo), m 1,2 
t o Ix x01 ~<e 

(A.1) 

and 

lim Rm(t, e, Xo)= 0 + o~(1) 
t-->0 

uniformly in x0 e K (A.2) 

(ii) For Ix - Xol > e > 0, with fixed e, 

1 
- p(x, tlXo) = W(xl xo) + Rw(t, e, x, Xo) (A.3) 
t 

and 

lim Rw(t, ~, x, Xo)=0 uniformly in x, x 0 (A.4) 
t ~ 0  

(iii) For t > 0 ,  p(x, t lXo) is continuously differentiable in t and, if 
DI(X), O2(x ) =~ 0 twice differentiable in x. The Dl(x) and D2(x ) are once, 
respectively twice, differentiable. 

Then p(x, t lXo) satisfies the equation 

~ ~2 
a--7 p(x, t l xol = - ~x [ O ,(xl  p(x, t l Xo)] + g-2x~ [ D~(x) p(x, t l Xot ] 

+fcly  [W(x ly )p (y ,  t lXo) -  W(ylx)p(x ,  tlXo)] (A.5) 

Remarks. The uniformity conditions (A.2) and (A.4) can be stated 
more explicitly as follows. For x o in a compact set K c  N, there exist 
functions/~m(t, ~) and Rm(e) such that 

[Rm(t, ~, Xo)l < Rm(t, ~) ~ / ? r e ( e )  ~ 0 (1.6) 

There is a function t~w(t, a) such that 

IRw(t, e, x, xo)[ </~w(t,  e) ~-72 ~ 0 (A.7) 

The proof follows essentially ref. 3, but with weaker hypotheses needed in 
the present context. 
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ProoL We consider test functionsf(x)e ego3, with compact support in 
K, which can be developed in the form 

f(y) = f(x) + (y - x) dr(x) . 1 d2f(x) --~x + - ~ ( y - x ) Z ~ + ( y - x ) 2  Rf(y,x) (1.8) 

where the remainder is equal to 

1 d3f(r 
Ry(y ,x )=(y -x )3  ! dx 3 with {e[y , x ]  

We consider 
a 

f dy f (y )~p(y ,  tlXo) 

= ~?--t dyf(y)p(y, tlXo) 

= lim 1 f a,-oA--7 dyf(y)[p(y, t+AtlXo)-p(y,  tlxo)] (A.9) 

Using the Chapman-Kolmogorov equation, separating the range of 
integration into two parts, and inserting the representation (A.8) in one of 
them, we can write the first term as 

f dy f(y) p(y, t + Atlxo) 

= f f  dydxf(y) p(y, Atlx) p(x, tlXo) 
Ex yl  > e 

+ff  dydxf(y) p(y, AtLx) p(x, tlxo) 
Ix y l  <~ e 

= ff  dydxf(y) p(y, Atlx) p(x, tlxo) 
Ix y k > e  

+ff  dydxf(x)p(y, Atlx)p(x, tlXo) 
I x -  Yl <~ ~ 

Ix- yl~, ~ p(y, Atlx) 

1 dy(x) ] 
+ ~ ( y - x )  2 ~ p(y, Atlx) p(x, tlxo) 

+f f  dydx(y-x)2Ry(y,x)p(y,  Atlx) p(x, tlXo) 
I x - -  yl  <~ E 
y ~ K  
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If we multiply the second term of (A.9) by the trivial factor 
1 =~dxp(x, At[y) and exchange the dummy arguments x and y, it 
becomes 

f dyf(y)  p(y, t l X o ) = f f  dy dxf(x) p(y, Atlx) p(x, tlXo) 

Putting these expressions together and using the uniform convergence of 
the limits (A.2) and (A.4) to exchange the limit At  ~ 0 and the integrals, 
we obtain 

0 
f dy f (y)  p(y, t J Xo) ~t 

2 ~ 1 dmf(x) 
+ ~  j dx 

m = 1 m d x  m 

x [ l i m  I f dy(y_x)mp(y ,  Atrx)]p(x, tjXo) 
L~t~oAt rx-yj<_e 

+ lim • dydx (y -x )ZR f ( y , x )p (y ,  Atlx) p(x, tlXo) 
A f l O A t  Ix yr<~e 

y ~ K  

and inserting (A.1)-(A.3), we obtain 

= f dx f(x) f x yl> dy [ W(x]y) p(y, t]Xo)- W(ytx) p(x, tlXo)] 

+ f dx~x) Dl(x) p(x, tlXo) 

1 d2f(x) F 
+ J dx2 dx ~ D2(x) p(x'tlx~ 

2 ~ 1 d m f ( x )  
+ ~ jdx  - -  [ l ira Rm(e, At, x)]p(x,t]Xo) 

rn~ l m d x  m At ~ o  

+ lira dy dx (y - x) 2 Rf(y, x) p(y, At lx) p(x, t t Xo) 
A t ~ O Z  [ x - - y l ~  e 

y ~ K  

(A.IO) 
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This equality is satisfied for all e, and we can thus take the limit ~ ~ 0 +. 
The three terms involving remainders vanish in this limit: For the first two, 
using the uniform convergence (A.6) and the fact that the integral is over 
a compact set, we can write 

' dmf(x) I Xo) 

dmf(x) 
dx m p(x, t iXo) 

< clRm(e)fdxp(x, tlXo) 

= c l R m ( e ) ~  0 

For the last term we notice by the same arguments that 

1 d3f(~) ~< g ~I d3f(~) 
I _ _ ( y , x ) l = l y - x l  = ~ . d x  3 <<. c2e 

and therefore 

2}mo~l fflx_yl<~ dydx(y-x)2  Rf(y'x) p(y'Atlx) p(x'tlx~ 
y ~ K  

ff ~< c2elimo~- ~ ix_yl< dydx(y-x)2  p(y, Atlx) p(x, tlXo) 
y a k  

c2 e f~,dx E lim l flx_y,<~ dy ( y - x )  2 p(y, Atlx)l p(x, tlXo) 

<~ c2e f~ dx [D2(x)+ R2(e)] p(x, tlXo) 

<. c3e ~ 0 

where K ' D  K is compact. The final step is integration by parts in (A.10). 

T h e o r e m  2. Let q(x, t lXo) be the t.p.d, of a Markov process subor- 
dinated to a diffusion with t.p.d, p(x, S[Xo) by a proper subordinator 
v(z) = cz + ~+ do(s) (1 - e -'z) such that: 

(a) p(x, slxo) satisfies the conditions of Theorem 1, with 
W(xlxo)  = O. 
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(b) For  t > 0  and IX-XoJ > e > 0 ,  p(x, t l x0 ) i s  bounded. 

(c) For t > 0 ,  q(x, t IXo) is continuously differentiable in t and, if 
c r 0, twice differentiable in x. 

Then q(x, t lxo) satisfies for t > 0 the equation 

O--t q(x, t l Xo) 

= c - -#-s [ O l ( x )  q(x,  glxo)] + ~ x  ~ [ O 2 ( x )  q(x,  tlxo)3 

+ ~ d y [ W ( x l y )  q(y, t i X o ) - W ( y l x ) q ( x ,  tjXo) ] (A.11) 

with 

W(XlXo) = + @ ( s )  p(x, s i x 0 )  

This is a consequence of Lemma 1 and Theorem 1. 

k o m m a  1. Under the conditions of Theorem 2 we have: 

I. For  Xo in a compact set K c [ ~  and e > 0  there are functions 
Sm(t, G XO), Sin(t, e), and S,,(e) such that 

5 
dx (x - Xo) ~ q(x, t l Xo) = cDm(xo) + Sin(t, e, Xo), 

t 3ix - xol ~< e 

and 

II. 

m = l ,  2 

(a.12) 

ISm(t, GXo)l<gm(t,~) t~oSm(~)-~-L-~o 0 ( A . 1 3 )  

For  [ x -  Xol > e > 0 with fixed e, there are functions Sw(t,  ~, x, Xo) 
and Sw(t ,  e) such that 

t q(x, t l Xo) = + do(s) p(x, s lxo) + Sw(t,  e, x, Xo) 

and 

(A.14) 

JSw(t ,  a, x, Xo)[ < S w ( t ,  e ~ 0 (A.15) t ~ 0  

i.e., one also has the uniform convergence in the subordinated process. 

822/60/3-4-10 
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Proo[. I. We start by expressing (A.12) as 

1 f dx (x - Xo) m q(x, t l Xo) 
IX-Xo[<~e 

i f  dx [x__ xo[m f~  dyt(s) p(x,s[xo ) 
t Ix-xol <e 

'fo f t dy,(s) dx (x - Xo) m p(x, s lxo) 
Ix -xo l  ~<~ 

The exchange of the integrals is justified since 

f dxlx__xolmq(x, tlXo)~a m 
Ix -xo l  ~<e 

We split the integral into three pieces: 

fo = + + r 

(A.16) 

(A.17) 

(A.18) 

where T > 0  is an arbitrary constant. Using (A.1), we can write the first 
integral as 

? __slf  dx(x_xo)mp(x, slxo) d~,(s) t s Ix-xol<.~ 

= Dm(x~ f ?  d't(s) S+ f ?  dyt(s) (A.19) 

The first term can be written as 

;o ' II? '3 Dm(xo) d~t(s) t=cDm(xo)+Dm(xo) dTt(s) t - c  

where the difference can be bounded in K by 

I?  C s Dm(xo) dT,(S) t - c  ~<sup IDm(Yll dy,(s) t - c  
y ~ K  

The term involving the remainder in (A.19) can be estimated (for e small 
enough) using (A.6) as 

f /  s ~ , c,/~ s dTt(s) tRm(a,s ,xo) < [  sup Rm(s,a)] Jo dyt(s) t 
~'~ (o, ./7) 
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For  the last two integrals of (A.18), we use (A.17) to obtain the bound  

1 o~ 1 
f,f~ dTt(s) t Ix  xol<~ dx IX-- xoIm p(x' tlXo)<~ e~ f,/7 d? ' (s)  t 

independent ly  of x o. Further ,  

f5 1 = /fin -- 1/2 f ~  d~) 1 el/2 8"m d~)t(S) 7 t(S) t 

' f ' 
~ m - 1 / 2  d])t(s)-s~gmt 1/2 + d?t(s) t 

Put t ing the preceding estimates together,  we can write the following 
uniform bound:  

~fO "JO f --CDm(XO) dTt(s) d x ( x - x o ) m p ( x ,  s lxo)  ~ S m ( t , g )  
Ix- xol <~ e 

with 

fff 
~ s 

am(t, 2) -- sup IDm(Y)I dT,(s) t -  c 
y~K 

+ [ sup " ' s 
s' ~ (o+.../~) 

f ~  1 r s ..~_ ~m d~) t(S)_.~_ ~m- l/2 f d])t(s ) 
r t 3o+ t 

We can now easily verify that  lim~ ~o lira, 4 o  Sin(I, c )  = 0: Using Eqs. (B.10) 
and (B.4) of  Appendix  B, we obtain  

Sm(t, e) = sup [Om(Y)l I C-J da ( s ) -  c lira 
t~O y~K JO 

+ [ s u p  " ' I "/~ l~m(S , 2)] dff(S) 
s'~(o, C2) J o  

+ e m de(s) + de(s) s 
T + 

(A.20) 

The  integrabili ty condi t ion (2.12) on dQ(s) guarantees  that  the integrals are 
finite. Finally, invoking (B.5), one sees that  (A.20) vanishes in the limit 
e ~ 0 .  
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II. The expression (A.14) for the jump rate can be obtained as 
follows. Since 

t q( , t]xo) dTt(s) p(x, SlXo) 

the remainder term of (A.14) can be written as 

Sw(t,e,X, Xo)= dy,(s) p(x, SlXo)- do(s) p(x, SlXo) 
+ 

= f~  [ d~''(s) lt- do(s)] p(x, SlXo) 

fo s p(x, S lXo) do(s) s p(x, S lXo) 
+ dye(s) t s + s 

where ~ > 0 is an arbitrary constant. The first integral can be bounded by 

~< [ sup 
s' e (0 +, oo) 
I x - x o l  > e  

o~ 1 _ de(s) p(x, s'lxo)] f, d~,(s) 7 

The supremum is finite according to the condition (b) of the theorem. For 
the second and third integrals we use (A.3) for the special case of a 
diffusion, and obtain the bound 

dye(s) ts p(x, sSlX~ + + do(s) s p(x, sS 

fodV,(s) StRw(s, Xo) fo = e, x, + + do(s) sRw(s, ~, x, Xo) 

[;: ] [ sup ~ ' dQ(s)s Rw(s , e) ] dy,(s) S+ 
s '~  [0,~-] t + 

We can now put the preceding estimates together to obtain 

IXw(t, ~, x, Xo)l 

1 ~ ,Xo) = d~,(~)  7 p (~ '  ~ I X o ) -  + de(~)  p ( x ,  s 
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~< [ sup p(x, stxo)] d~/,(s) -do(s )  
s ' e  (0+,oo) 
I x - x o l  > 8  

1 + [ sup Rw(s ,  8)] dvt(s) + do(s) s 
s ' e  EO,~] 

= '  ~w(t, 8) 

If we take the limit t ~ 0, the first term vanishes due to (B.1), and the last 
two terms give 

lim Sw(t,  e) = [ sup Rw(s', e)] da(s) + dot(s) 
t ~ O  s ' e  [O,r] + 

Since ~ is arbitrary and it does not appear on the le•hand side, the 
inequality is still valid in the limit ~ ~ 0 +. In this limit the terms in the 
curly brackets tend to c [by Eq. (B.5)] and the term in the square brackets 
tends to zero. 

APPENDIX B 

In this Appendix we discuss some properties and relations connecting 
dT,(s), v(z), and do(s), and deduce Eq. (3.4). We will use the step function 

O(s)= {01 for s < 0  
for s>~0 

Lemma. (i) The measure d?,(s) is related to do(s) by the following 
weak limit: 

1 
do(s) = lim - dT,(s) 

t ~ O  + t 
in (0 § ~ )  (B.I) 

i.e., d0(s) is the jump rate of the subordinator. 

(ii) The subordinator has a drift equal to c. 

(iii) It has no diffusion. 

Proof. We will use the following facts(7): Since, according to (2.10), 
v ' ( z ) -dv /dz  is completely monotone, it has a positive inverse Laplace 
transform &r(s): 

;5 v'(z) = da(s) e - ~  (B.2) 
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By integration one obtains the representation (2.11) for v(z): 

v ( z ) = c z +  da(s) l - ( 1 - e  -=)  
+ S 

i.e., 

and 
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(B.3) 

d~(s) 
@(s)=  in (0 +, ~ )  (B.4) 

s 

(i) 
transform: From (2.7) we have 

c = a ( 0  + ) - a ( 0 )  (B .5 )  

We will prove (B.1) using the uniqueness of the inverse Laplace 

e-t~(z)= d?, (s)e  -=  for z~>0 (B.6) 

By differentiation with respect to z we obtain 

v'(z) e -t~(~) = d?,(s) s e_S~ 
t 

and therefore 

v'(z) = lim f ~  s ,~oJo dT'(s) t e  = for z~>0 

Comparing with (B.2), we obtain 

fo fo }im ~ d ? t ( s ) S e - s ~ =  &r(s) e - ' z  for z > 0  
t 

By the continuity theorem of P. L6vy (see ref. 24), this implies 

s 
lim d?t (s) t = da(s) in [0, oo) 
t ---~ 0 

and thus (B.1). 

(ii) The drift is given by 

lim lim d?~(s) s = lim d6(s) = c 
e--*0 t ~ 0  e ~ O  

(B.7) 

(B.8) 

(B.9) 

( B . 1 0 )  
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(iii) The diffusion coefficient is given by 

lira lira _1 ~ dy,(s) s 2 = lira d~(s) s <~ lira e d~r(s) = 0 
~ 0  t ~ O  t 30 e ~ O  e ~ O  

k e m m a .  The subordinator measures dyl~ and dvlC)(s) corre- 
sponding, respectively, to a subordinator v(~ without a linear part (i.e., 
c = 0) and to v(C)(z)= cz + v(~ are related by 

d~IC~(s)  = O(s  - c t  ) 4 , ~ ~  - c t  ) (B.11) 

Proof. It follows immediately from (2.7) and 

f o  dTl~ ct) O(s-  ct) e z~. 

f? = d~}O)(r) e-Zre z,,= e [~+v(~ (B.12) 

Coro l l a ry .  If q(~ tlXo) is the subordinated t.p.d, to p(x, tlXo) 
through q(~ t[Xo) = ~ dT~~ p(x, S[Xo), then the process subordinated 
through dT~)(s) has t.p.d. 

q(~(x, t tXo)= dTl~ O(s-c t )  p(x, slxo) 

Jo = dTl~ (B.13) 

Coro l l a ry .  The t.p.d, q(C) and q(0) are related by both of the 
following equations: 

q(~)(x, t] Xo) = dy p(x, ctly) q(O)(y, t lxo) 
c ~  

S = dyq(~ t ly)  p(y, ctlxo) (B.14) 
--oO 

Proof. Using the two forms of the Chapman-Kotmogorov equation 

(f~ dy p(x, ct ,y)  p(y,S]Xo) 

p(x, s + ct ] xo) = l i i ~  (B.15) 
dy p(x, sly)  p(y, ctlxo) 
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we can write 

fo q(C)(x, t[Xo)= @l~ p(x,s+ctlxo) 

dy p(x, ctly) f~ dT~~ p(y, six0) 

dy q(~ t l y) p(y, ctlxo) 

which is (B.14). 

(B.16) 

A P P E N D I X  C 

In this Appendix we deduce the Kramers-Moyal expansion for a 
process subordinated to the Wiener process and relate its coefficients to the 
Taylor expansion at zero of the analytic subordinator v(z). 

The Kramers Moyal expansion is a formal way to write the 
Kolmogorov-Feller equation (1.1) as a linear partial differential equation 
of infinite order: 

k (-11" 0" ~q(x,  tlXo)= n! ax "[~"(x) q(x'tlx~ 

The coefficients t/,(y), if they exist, are given by (1) 

S f\ ~ . ( y ) =  lim -1 d x ( x -  Xo)"q(x, tly)= dx(x-xo)"W(x ly )  (C.1) 
t~o+ t _~ 

(provided that one can exchange the limit and the integral). 
From the pseudodifferential equation (4.5), we deduce formally an 

expansion 

~ x ( ~q( , tlxo)= - v  - - - -  

= - ~  
n ~ l  

=k 

2~x i q(x, tiXo) 

vE.'J(o) ( 1 a 2 ~" 
n! _ 2 ~xZJ q(x, t]Xo) 

(--1) "+1 vE"'](O) 8 2" 
2"n! tx 2~q(x' tlx~ (C.2) 
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where we have denoted vEk'](z)= (dk/dz k) v(z). We notice that if v(z) is 
analytic, we obtain 

;? vEn'](O)=C~l,n + ( - -1 )  n - I  + Q(dr) rn 

Thus, (C.2) can be written as 

Ot q(x, t l Xo) = -~ ~x z q(x, t l Xo) + n=l --2"n! 

02~ 
• ~xz~ q(x, tl Xo) 

~(dr) r" 1 

On the other hand, if we compute  the K r a m e r s - M o y a l  coefficients, using 
(C.1), we find that  

p o O  

n,,(x) = j dz ( z -  x) ~ W(zlx) 
oo 

c~ co e ( z -  x)2/2r 

= fo+ Q(dr) f-oo dz ( z - x )  n ( 2 7 z r ) l / 2  

=l "~ 
(2n)_~.~ i ~ 

�9 2 " n [  Jo+ 

for n odd 

Q(dr) r n/2 + c(~2, n for n even 

[A sufficient condit ion for the validity of these calculations 
~+ Q(dr)rl /2< o0.] The two expansions are thus identical. 

is 

A C K N O W L E D G M E N T S  

We thank M.-O. Hongler,  who introduced us to the method of sub- 
ordination,  and W. Amrein for very helpful discussions. This work was 
partially supported by the Swiss Nat ional  Science Foundat ion.  

R E F E R E N C E S  

1. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1981 ). 
2. E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in 

Fluctuation Phenomena, E. W. Montroll and J, L. Lebowitz, eds. (North-Holland, 1987). 
3. C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983). 
4. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984). 
5. S. Bochner, Proe NatL Acad. Sei. USA 48:19 (1962). 



444 Monti  and Jauslin 

6. S. Bochner, Stable laws of probability and completely monotone functions, Duke 
Math. J. 3:726 (1937). 

7. S. Bochner, Harmonic Analysis and the Theory of  Probability (University of California 
Press, Los Angeles, 1955). 

8. M.-O. Hongler, Phys. Lett. 112A:287 (1985). 
9. M.-O. Hongler, J. Opt. Soc. Am. A 5:1649 (1988). 

10. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 
1966). 

11. B. Fristedt, Sample functions of stochastic processes with stationary, independent 
increments, in Advances in Probability and Related Fields, Vol. 3, P. Ney and S. Port, eds. 
(Marcel Dekker, New York, 1974). 

12. I. S. Gradshteyn and I. M. Ryzhik, Table of  Integrals, Series and Products (Academic 
Press, New York, 1965). 

13. W. Feller, Trans. A MS  48:488 (1940). 
14. E. Lukacs, Characteristic Functions (Griffin, London, 1970). 
15. V. M. Zolotarev, One-Dimensional Stable Distributions (American Mathematical Society, 

Providence, Rhode Island, 1986). 
16. G. Jona-Lasinio, Nuovo Cimento 28:99 (1975). 
17. J. T. Bendler, J. Stat. Phys. 36:625 (1984). 
18. J.-P. Bouchaud and A. Georges, J. Phys. A 20:Ll161 (1987). 
19. J.-P. Bouchaud, A. Georges, and P. Le Doussal, J. Phys. (Paris) 48:1855 (1987). 
20. R. M. Blumental and R. K. Getoor, Illinois J. Math. (1962). 
21. F. Oberhettinger and L. Badii, Tables of Laplace Transforms (Springer-Verlag, Berlin, 

1973). 
22. M.-O. Hongler and R. C. Desai, Helv. Phys. Acta 59:407 (1986). 
23. H. R. Jauslin, J. Phys. A 21:2337 (1988). 
24. H. Bauer, Probability Theory and Elements of Measure Theory (Academic Press, London, 

1981). 


